字典APP>历史百科>四库百科>筹算

筹算

二卷。清梅文鼎(详见《历算全书》)撰。这是一部介绍西洋纳皮尔算筹用法的专著,写于1678年。初稿为七卷,梅珏成在编辑《梅氏丛书辑要》时精简为二卷。原术为直筹横写,为了与西方笔算横式书写相适应,《筹算》则改为横筹直写,这相应于梅氏改进的笔算竖写形式,并将纳皮尔算筹的斜格改为半圆形格,更为明了。《筹算》卷一讨论了用他改进后的算筹进行乘除的方法。乘除共用筹十个,依次称第一筹、第二筹、……第九筹,另有一空位筹。书中有一张筹式图说明这十个筹的内容。例如75×564=42300,则取五、六、四筹(564),又对准行数后取第五行、第七行两数2820、39480相加即得。除法亦用这十个筹进行,只须议定商数的各位数字,从被除数内逐步减去。《筹算》卷二讨论了开平方、开带从平方、开立方、开带从立方的用筹方法。在开平方、开立方时,须用到表示从1到9的平方数和立方数的两支算筹。值得注意的是梅文鼎在讨论筹算开带纵立方之前,首先讨论了开带纵立方的分类,他说:“泰西家说勾股开方甚详,然未有带纵之术。《同文算指》……于立方带纵终缺然也。程汝思《统宗》所载,又皆两纵之相同者。……兹因筹算,稍以鄙意完其缺。”故梅文鼎将其分为三类:带一纵,带两纵相同,带两纵不同,其分别相当于三类方程:x2(x+a)=V,x(x+a)2=V,x(x+a)(x+b)=V,其中a,b,V>0。再用筹算求解这三类三次方程的正根。这是宋元的数学失传后梅文鼎对三次方程理论的贡献。这一分类后被编入《数理精蕴》称为开带纵立方,并在此基础上创立了开带纵和数立方。经梅文鼎改进后的算筹被称为中国式的纳皮尔筹,它对后来制造的手摇计算机有一定的影响。《筹算》七卷本的版本有康熙年金陵刊本;李光地上谷刊本;《梅氏历算全书》本;《中西算学汇通》本;两卷本为《梅氏丛书辑要》本,在北京图书馆、北大图书馆、浙江图书馆等处多有收藏。另外在中科院自然科学史研究所藏有1887年陕西求友斋的三卷刊本和一个手抄本,该抄本前有《筹算入门》一卷(未著撰人)。

猜你喜欢

  • 潜书

    四卷。清唐甄(1630-1704)撰。唐甄原名大陶,字铸万,后更名甄,号圃亭。四川达州(今达县)人。顺治十四年(1657)举人,官山西长子县知县,不久罢归,侨居苏州,从事著述。著作除《潜书》外,还有《

  • 曾惠敏公集

    十四卷。清曾纪泽(1839-1890)撰。曾纪泽,字劼刚,湖南湘乡人。曾国藩长子。清末外交家。精通小学、乐律,兼通外文。1878年出使英、法,1880兼任驻俄公使。参与中俄谈判,修订《中俄伊犁条约》。

  • 扁鹊指南图

    一卷。不著撰人名氏。此书以脉证形色编为歌括,以便记诵。可能为市井俗医所作。

  • 遂宁县志

    ①十二卷首一卷,张松孙等修,寇赉言等纂。遂宁县志创于明嘉靖时期,后因战乱散失。清代张文端遍访故老,广搜典籍,又重新纂辑。乾隆八年(1743)县令田朝鼎复为增辑,视旧志加详,分门凡三十六类。又四十二年,

  • 论语陈氏义说

    一卷。魏陈群撰。清马国翰辑为一卷。群字长文,颍川许昌(今河南许昌)人。位至司空。封颍阴侯。《魏书·陈群传》未载陈氏注《论语》、《释文》,隋唐志也无著录,年久亡佚。何晏撰《集解》收入三节。马融据此,附上

  • 李氏居室记

    五卷。明李濂(1488-1566)撰。李濂,字川父,祥符(今河南开封市)人。正德进士,历官山西佥事。嘉靖间免归。李濂少负俊才,慨然慕信陵君、侯生之为人。初受业于李梦阳,后不屑附和。里居四十余年。以古文

  • 荀爽周易注

    一卷。东汉荀爽撰。辑佚书,清孙堂辑。荀爽字慈明,颍川颍阴(今河南许昌)人,官至司空。据荀悦称,其叔父司空爽著有《易传》,以十篇之文解说经义。后传荀氏学者虽不在少数,然此书早亡佚。清马国翰曾辑入《玉函山

  • 点苍山人诗钞

    八卷。《赎台记恩》一卷。清沙琛(1759-1822)撰。沙琛,字献如,号雪湖,太和(今云南大理)人。才思敏捷,刻苦读书,工诗,偶有所得,挥笔即成。晚年失意,遍览名胜,交游贤豪。著有《点苍山人诗钞》。此

  • 文选句图

    一卷。宋高似孙(约1199前后在世)撰。高似孙字续古,号疏寮。浙江余姚人,生卒年不详。淳熙十一年(1184)进士。官知信州等。著有《剡录》。案摘句为图,始于张为。其书以白居易等六人为主,以杨乘等七十八

  • 续词余丛话

    三卷。清杨恩寿(详见《词余丛话》)撰。此书与《词余丛话》体例相同。卷一为“原律续”,卷二为“原文续”,卷三为“原事续”,分别谈声律、评曲文、记本事及掌故。所举撰者、曲名,有“曲录”未备者,但考核不详。